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Analysis of Algorithms is the determination of the

amount of time, storage and/or other resources necessary

to execute them.

Analyzing algorithms is called Asymptotic Analysis

Asymptotic Analysis evaluate the performance of an

algorithm
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Time complexity
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 time complexity of an algorithm quantifies the amount of time taken

by an algorithm

We can have three cases to analyze an algorithm:

1) Worst Case

2) Average Case

3) Best Case
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 Assume the below algorithm using Python code:
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Worst Case Analysis: In the worst case analysis, we calculate upper

bound on running time of an algorithm.
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Worst Case Analysis: the case that causes maximum number of

operations to be executed.

 For Linear Search, the worst case happens when the element to be

searched is not present in the array. (example : search for number

8)

2 3 5 4 1 7 6
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Worst Case Analysis: When x is not present, the search() functions

compares it with all the elements of arr one by one.
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 The worst case time complexity of linear search would be O(n).
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 Average Case Analysis: we take all possible inputs and calculate

computing time for all of the inputs.
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 Best Case Analysis: calculate lower bound on running time of an

algorithm.
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 The best case time complexity of linear search would be O(1).
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 Best Case Analysis: the case that causes minimum number of

operations to be executed.

 For Linear Search, the best case occurs when x is present at the first

location. (example : search for number 2)

 So time complexity in the best case would be Θ(1)
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Most of the times, we do worst case analysis to analyze algorithms.

 The average case analysis is not easy to do in most of the practical

cases and it is rarely done.

 The Best case analysis is bogus. Guaranteeing a lower bound on an

algorithm doesn’t provide any information.
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1) Big O Notation: is an Asymptotic Notation for the worst case.

2) Ω Notation (omega notation): is an Asymptotic Notation for the

best case.

3) Θ Notation (theta notation) : is an Asymptotic Notation for the

worst case and the best case.
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Big O Notation
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1) O(1)

 Time complexity of a function (or set of statements) is considered as

O(1) if it doesn’t contain loop, recursion and call to any other non-

constant time function. For example swap() function has O(1) time

complexity.
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 A loop or recursion that runs a constant number of times is also

considered as O(1). For example the following loop is O(1).
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2) O(n)

 Time Complexity of a loop is considered as O(n) if the loop

variables is incremented / decremented by a constant amount. For

example the following loop statements have O(n) time complexity.
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2) O(n)
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2) O(n)

 Another Example:
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3) O(nc)

 Time complexity of nested loops is equal to the number of times the

innermost statement is executed. For example the following loop

statements have O(n2) time complexity
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3) O(n2)
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 Another Example
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4) O(Logn)

 Time Complexity of a loop is considered as O(Logn) if the loop

variables is divided / multiplied by a constant amount.
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4) O(Logn)

 Another Example



Analysis and Design of Algorithms

5) O(LogLogn)

 Time Complexity of a loop is considered as O(LogLogn) if the loop

variables is reduced / increased exponentially by a constant.
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5) O(LogLogn)

 Another Example
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 How to combine time complexities of consecutive loops?

 Time complexity of above code is O(n) + O(m) which is O(n+m)
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n O(1) O(log(n)) O(n) O(nlog(n)) O(N2) O(2n) O(n!)

1 1 0 1 1 1 2 1

8 1 3 8 24 64 256 40xx103

30 1 5 30 150 900 10x109 210x1032

500 1 9 500 4500 25x104 3x10150 1x101134

1000 1 10 1000 10x103 1x106 1x10301 4x102567

16x103 1 14 16x103 224x103 256x106 - -

1x105 1 17 1x105 17x105 10x109 - -
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Length of Input (N) Worst Accepted Algorithm

≤10 O(N!),O(N6)

≤15 O(2N∗N2)

≤20 O(2N∗N)

≤100 O(N4)

≤400 O(N3)

≤2K O(N2∗logN)

≤10K O(N2)

≤1M O(N∗logN)

≤100M O(N),O(logN),O(1)
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 Find the complexity

of the below

program:
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 Solution: Time

Complexity O(n).

Even though the

inner loop is

bounded by n, but

due to break

statement it is

executing only once.
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 Find the complexity of the below program:
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 Solution:

Time

O(n2logn)
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 Find the complexity of the below program:
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 Solution:

Time

O(n log2n)
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 Find the

complexity

of the

below

program:
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 Solution:

Time O(n5)
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