
Analysis and Design of Algorithms

Analysis of Algorithms I



Analysis and Design of Algorithms

Analysis of Algorithms

Time complexity

Asymptotic Notations

Big O Notation

Growth Orders

Problems



Analysis and Design of Algorithms

Analysis of Algorithms is the determination of the

amount of time, storage and/or other resources necessary

to execute them.

Analyzing algorithms is called Asymptotic Analysis

Asymptotic Analysis evaluate the performance of an

algorithm



Analysis and Design of Algorithms

Time complexity



Analysis and Design of Algorithms

 time complexity of an algorithm quantifies the amount of time taken

by an algorithm

We can have three cases to analyze an algorithm:

1) Worst Case

2) Average Case

3) Best Case



Analysis and Design of Algorithms

 Assume the below algorithm using Python code:



Analysis and Design of Algorithms

Worst Case Analysis: In the worst case analysis, we calculate upper

bound on running time of an algorithm.



Analysis and Design of Algorithms

Worst Case Analysis: the case that causes maximum number of

operations to be executed.

 For Linear Search, the worst case happens when the element to be

searched is not present in the array. (example : search for number

8)

2 3 5 4 1 7 6



Analysis and Design of Algorithms

Worst Case Analysis: When x is not present, the search() functions

compares it with all the elements of arr one by one.



Analysis and Design of Algorithms

 The worst case time complexity of linear search would be O(n).



Analysis and Design of Algorithms

 Average Case Analysis: we take all possible inputs and calculate

computing time for all of the inputs.



Analysis and Design of Algorithms

 Best Case Analysis: calculate lower bound on running time of an

algorithm.



Analysis and Design of Algorithms

 The best case time complexity of linear search would be O(1).



Analysis and Design of Algorithms

 Best Case Analysis: the case that causes minimum number of

operations to be executed.

 For Linear Search, the best case occurs when x is present at the first

location. (example : search for number 2)

 So time complexity in the best case would be Θ(1)

2 3 5 4 1 7 6



Analysis and Design of Algorithms

Most of the times, we do worst case analysis to analyze algorithms.

 The average case analysis is not easy to do in most of the practical

cases and it is rarely done.

 The Best case analysis is bogus. Guaranteeing a lower bound on an

algorithm doesn’t provide any information.



Analysis and Design of Algorithms

1) Big O Notation: is an Asymptotic Notation for the worst case.

2) Ω Notation (omega notation): is an Asymptotic Notation for the

best case.

3) Θ Notation (theta notation) : is an Asymptotic Notation for the

worst case and the best case.



Analysis and Design of Algorithms

Big O Notation



Analysis and Design of Algorithms

1) O(1)

 Time complexity of a function (or set of statements) is considered as

O(1) if it doesn’t contain loop, recursion and call to any other non-

constant time function. For example swap() function has O(1) time

complexity.



Analysis and Design of Algorithms

 A loop or recursion that runs a constant number of times is also

considered as O(1). For example the following loop is O(1).



Analysis and Design of Algorithms

2) O(n)

 Time Complexity of a loop is considered as O(n) if the loop

variables is incremented / decremented by a constant amount. For

example the following loop statements have O(n) time complexity.



Analysis and Design of Algorithms

2) O(n)



Analysis and Design of Algorithms

2) O(n)

 Another Example:



Analysis and Design of Algorithms

3) O(nc)

 Time complexity of nested loops is equal to the number of times the

innermost statement is executed. For example the following loop

statements have O(n2) time complexity



Analysis and Design of Algorithms

3) O(n2)



Analysis and Design of Algorithms

 Another Example



Analysis and Design of Algorithms

4) O(Logn)

 Time Complexity of a loop is considered as O(Logn) if the loop

variables is divided / multiplied by a constant amount.



Analysis and Design of Algorithms

4) O(Logn)

 Another Example



Analysis and Design of Algorithms

5) O(LogLogn)

 Time Complexity of a loop is considered as O(LogLogn) if the loop

variables is reduced / increased exponentially by a constant.



Analysis and Design of Algorithms

5) O(LogLogn)

 Another Example



Analysis and Design of Algorithms

 How to combine time complexities of consecutive loops?

 Time complexity of above code is O(n) + O(m) which is O(n+m)



Analysis and Design of Algorithms

n O(1) O(log(n)) O(n) O(nlog(n)) O(N2) O(2n) O(n!)

1 1 0 1 1 1 2 1

8 1 3 8 24 64 256 40xx103

30 1 5 30 150 900 10x109 210x1032

500 1 9 500 4500 25x104 3x10150 1x101134

1000 1 10 1000 10x103 1x106 1x10301 4x102567

16x103 1 14 16x103 224x103 256x106 - -

1x105 1 17 1x105 17x105 10x109 - -



Analysis and Design of Algorithms



Analysis and Design of Algorithms

Length of Input (N) Worst Accepted Algorithm

≤10 O(N!),O(N6)

≤15 O(2N∗N2)

≤20 O(2N∗N)

≤100 O(N4)

≤400 O(N3)

≤2K O(N2∗logN)

≤10K O(N2)

≤1M O(N∗logN)

≤100M O(N),O(logN),O(1)



Analysis and Design of Algorithms

 Find the complexity

of the below

program:



Analysis and Design of Algorithms

 Solution: Time

Complexity O(n).

Even though the

inner loop is

bounded by n, but

due to break

statement it is

executing only once.



Analysis and Design of Algorithms

 Find the complexity of the below program:



Analysis and Design of Algorithms

 Solution:

Time

O(n2logn)



Analysis and Design of Algorithms

 Find the complexity of the below program:



Analysis and Design of Algorithms

 Solution:

Time

O(n log2n)



Analysis and Design of Algorithms

 Find the

complexity

of the

below

program:



Analysis and Design of Algorithms

 Solution:

Time O(n5)



Analysis and Design of Algorithms

facebook.com/mloey

mohamedloey@gmail.com

twitter.com/mloey

linkedin.com/in/mloey

mloey@fci.bu.edu.eg

mloey.github.io



Analysis and Design of Algorithms

www.YourCompany.com
© 2020 Companyname PowerPoint Business Theme. All Rights Reserved. 

THANKS FOR 
YOUR TIME


