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Analysis of Algorithms

EIAnCI|ysis of A|gorifhms is the determination of the

amount of time, storage and/or other resources necessary

to execute them.

dAnalyzing algorithms is called Asymptotic Analysis

dAsymptotic Analysis evaluate the performance of an

algorithm
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Time complexity
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Time complexity

d time complexity of an algorithm quantifies the amount of time taken

by an algorithm

3 We can have three cases to analyze an algorithm:
1) Worst Case
2) Average Case

3) Best Case
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Time complexity

3 Assume the below algorithm using Python code:

def search(arr, Xx):
for 1 in range(len(arr)):
if arr[i] ==
return i+l
return -1
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Time complexity

3 Worst Case Analysis: In the worst case analysis, we calculate upper

bound on running time of an algorithm.

def search(arr, Xx):
for 1 in range(len(arr)):

if arr[i] == x:
return 1i+1
return -1
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Time complexity

d Worst Case Analysis: the case that causes maximum number of

operations to be executed.

A For Linear Search, the worst case happens when the element to be

searched is not present in the array. (example : search for number

8)
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Time complexity

d Worst Case Analysis: When x is not present, the search() functions

compares it with all the elements of arr one by one.

def search(arr, Xx):
for i in range(len(arr)):

if arr[i] == x:
return 1i+1
return -1
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Time complexity

A The worst case time complexity of linear search would be O(n).

def search(arr, Xx):
for i in range(len(arr)):

if arr[i] == x:
return 1i+1
return -1
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Time complexity

3 Average Case Analysis: we take all possible inputs and calculate

computing time for all of the inputs.

def search(arr, Xx):
for i in range(len(arr)):

if arr[i] == x:
return 1i+1
return -1
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Time complexity

d Best Case Analysis: calculate lower bound on running time of an

algorithm.

def search(arr, Xx):
for i in range(len(arr)):

if arr[i] == x:
return 1i+1
return -1
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Time complexity

A The best case time complexity of linear search would be O(1).

def search(arr, Xx):
for i in range(len(arr)):
if arr[i] ==
return i+l
return -1
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Time complexity

d Best Case Analysis: the case that causes minimum number of

operations to be executed.

A For Linear Search, the best case occurs when x is present at the first

ocation. (example : search for number 2)

A So time complexity in the best case would be 0(1)
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Time complexity

3 Most of the times, we do worst case analysis to analyze algorithms.

d The average case analysis is not easy to do in most of the practical

cases and it is rarely done.

A The Best case analysis is bogus. Guaranteeing a lower bound on an

algorithm doesn’t provide any information.
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Asymptotic Notations

1) Big O Notation: is an Asymptotic Notation for the worst case.

2) Q Notation (omega notation): is an Asymptotic Notation for the

best case.

3) ® Notation (theta notation) : is an Asymptotic Notation for the

worst case and the best case.
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Big O Notation
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Big O Notation

1) O(1)

> Time complexity of a function (or set of statemen

O(1) it it doesn’t contain loop, recursion anc

s) is considered as

cal

constant time function. For example swap}

complexity.

def swap(sl, s2):
return s2, sl

to any other non-

unction has O(1) time
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Big O Notation

> A loop or recursion that runs a constant number of times is also

considered as O(1). For example the following loop is O(1).

# ¢ 1s constant

c=4

for i in range(1l,c):
#some 0(1) expressions
#print(i)
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Big O Notation
2) Ofn}
> Time Complexity of a loop is considered as O(n) it the loop

variables is incremented / decremented by a constant amount. For

example the following loop statements have O(n) time complexity.
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Big O Notation

2) O(n)

# n 1s variable

# Cc 1s 1ncrement

for i in range(1l,n,c):
#some 0(1) expressions
print(i)
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Big O Notation

2) Ofn)
3 Another Example:

// Here c is a positive integer constant
for (int i =1; 1 <=n; 1 += c) {

// some O(1l) expressions

}

for (int i =n; 1 > 0; i -=c¢) {
// some O(1l) expressions

}
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Big O Notation

3) O(ne)

> Time complexity of nested loops is equal to the number of times the
innermost statement is executed. For example the following loop

statements have O(n?) time complexity
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Big O Notation

3) O(n?)

# n 1s variable
# Cc 1S 1ncrement
for i in range(l,n,c):
#some 0(1) expressions
for j in range(1l,n,c):
#some 0(1) expressions
print(i,J)
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Big O Notation

A Another Example

for (int i = 1; i <=n; 1 += c¢) {
for (int j = 1; j <=n; j += ¢) {
// some O(1l) expressions

for (int i =n; 1 > 0; i +=¢) {
for (int j = i41; j <=n; j += ¢) {
// some 0(1l) expressions
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Big O Notation

4) O(Logn)
> Time Complexity of a loop is considered as OllLogn) if the loop

variables is divided / multiplied by a constant amount.

# n 1s variable

# c 1S constant

i=2

while i<=n:
print(1i)
=HEEG
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Big O Notation

4) O(Logn)
> Another Example

for (int i = 1; i <=n; i *= c) {
// some O(1l) expressions

}

for (int i =n; 1 >0; 1 /=1c) {
// some 0(1l) expressions
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Big O Notation

5) OlLoglogn)
> Time Complexity of a loop is considered as O(Loglogn) if the loop

variables is reduced / increased exponentially by a constant.

# n 1s variable

# Cc 1S constant

i=2

while i<=n:
print(1i)
=11~
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Big O Notation

5) OlLoglogn)
> Another Example

// Here c 1s a constant greater than 1
for (int i = 2; i <=n; i = pow(i, c)) {
// some O(1l) expressions
}
//Here fun 1s sgrt or cuberoot or any other constant root
for (int 1 =n; 1 > 0; 1 = fun(i)) {

// some O(1l) expressions
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Big O Notation

3 How to combine time complexities of consecutive loops?

# n,R 1s variable

for 1 in range(n):
print(i)

for j in range(m):
print(j)

d Time complexity of above code is O(n) + O(m) which is O(n+m)
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Growth Orders

_n_ ot Olos) o) omog) o) o) ol
1 1 0 1 1 1 2 1

8 1 3 8 24 64 256 40xx103
30 1 5 30 150 900 10x10° 210x1032
500 1 9 500 4500 25x10* 3x1050 1x10134
1000 1 10 1000 10x10°  1x10° 1x10%°! 4x102567
16x103 1 14 16x103 224x103 256x106° - -
1x10° 1 17 1x10° 17x10° 10x10° - -
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Growth Orders

O(n") | on?)/ O(n)
O(vn)
: /
= O(log n)
/o
O(1)
/]

Data Input (Space)
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Growth Orders

Length of Input (N) Worst Accepted Algorithm

<10 O(N!),O(N°®)
<15 O(2N«N?2)

<20 O(2N«N)
<100 O(N4)

<400 O(N3)

<2K O(NZ?xlogN)
<10K O(N?)

<1M O(N=*logN)

<100M O(N),O(logN),O(1)
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A Find the complexity :IEunction(int n)
of the below if (n==1)
. return;
program: for (int i=1; i<=n; i++)
{
for (int j=1; j<=n; j++)
{
printf("*");
break;
}

Analysis and Design of Algorithms Dr Mohamed Loe



) , function(int n
3 Solution: Time ¢ ( )

: if (n==1)
Complexity  Ofn). return:
Even though the 'EOP (int i=1; i<=n; i++)
inner loop IS // Inner loop executes only one
// time due to break statement.
bounded by n, bUi' for (in't J=1J j<=n_; j++)
due to break {
printf("*");
statement It IS break;
. }
executing only once. )
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A Find the complexity of the below program:

void function(int n)
{
int count = 0;
for (int i=n/2; i<=n; 1i++)
for (int j=1; j+n/2<=n; j = j++)
for (int k=1; k<=n; k = k * 2)
count++;
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3 Solution: {
Time

O(n2logn)

void function(int n)

int count = 9;

// outer loop executes n/2 times
for (int i=n/2; i<=n; 1i++)

// middle loop executes n/2 times
for (int j=1; j+n/2<=n; j = Jj++)

// 1nner loop executes logh times
for (int k=1; k<=n; k = k * 2)
count++;
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A Find the complexity of the below program:

void function(int n)
i
int count = 0;
for (int i=n/2; i<=n; 1++)
for (int j=1; j<=n; j = 2 * j)
for (int k=1; k<=n; k = k * 2)
count++;
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3 Solution:
Time

O(n log?n)

void function(int n)

{
int count = 9;
for (int i=n/2; i<=n; i++)
// Executes O(Log n) times
for (int j=1; j<=n; j = 2 * j)
// Executes O(Log n) times
for (int k=1; k<=n; k = k * 2)
count++;
}
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OFind the void function(int n)
complexity int count = 0;
of the for (int 1=0; i<n; 1i++)
for (int j=1; j< i*i; j++)
if (%1 == 0)
program: {

below

for (int k=0; k<j; k++)
printf("*");
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void function(int n)

3 Solution: {
Time O(n?)

int count = ©;

// executes n times
for (int i=0; i<n; i++)

// executes O(n*n) times.
for (int j=i; j< i*i; j++)
if (j%i == 0)
{
// executes j times = O(n*n) times
for (int k=0; k<j; k++)
printf("*");
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Contact Me
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