Analysis and Design of
Algorithms .
lecture 2

Analysis of Algorithms
Dr. Mohamed Loey

Lecturer, Faculty of Computers and Information
Benha University

Egypt

Table of Contents

Analysis of Algorithms

Time complexity

Asymptotic Notations
Big O Notation

Growth Orders

Problems

Analysis and Design of Algorithms Dr Mohamed Loey

Analysis of Algorithms

EIAnCI|ysis of A|gorifhms is the determination of the

amount of time, storage and/or other resources necessary

to execute them.

dAnalyzing algorithms is called Asymptotic Analysis

dAsymptotic Analysis evaluate the performance of an

algorithm

Analysis and Design of Algorithms Dr Mohamed Loe

Time complexity

Analysis and Design of Algorithms Dr Mohamed Loe

Time complexity

d time complexity of an algorithm quantifies the amount of time taken

by an algorithm

3 We can have three cases to analyze an algorithm:
1) Worst Case
2) Average Case

3) Best Case

Analysis and Design of Algorithms Dr Mohamed Loe

Time complexity

3 Assume the below algorithm using Python code:

def search(arr, Xx):
for 1 in range(len(arr)):
if arr[i] ==
return i+l
return -1

Analysis and Design of Algorithms Dr Mohamed Loe

Time complexity

3 Worst Case Analysis: In the worst case analysis, we calculate upper

bound on running time of an algorithm.

def search(arr, Xx):
for 1 in range(len(arr)):

if arr[i] == x:
return 1i+1
return -1

Analysis and Design of Algorithms Dr Mohamed Loe

Time complexity

d Worst Case Analysis: the case that causes maximum number of

operations to be executed.

A For Linear Search, the worst case happens when the element to be

searched is not present in the array. (example : search for number

8)

Analysis and Design of Algorithms Dr Mohamed Loe

Time complexity

d Worst Case Analysis: When x is not present, the search() functions

compares it with all the elements of arr one by one.

def search(arr, Xx):
for i in range(len(arr)):

if arr[i] == x:
return 1i+1
return -1

Analysis and Design of Algorithms Dr Mohamed Loe

Time complexity

A The worst case time complexity of linear search would be O(n).

def search(arr, Xx):
for i in range(len(arr)):

if arr[i] == x:
return 1i+1
return -1

Analysis and Design of Algorithms Dr Mohamed Loe

Time complexity

3 Average Case Analysis: we take all possible inputs and calculate

computing time for all of the inputs.

def search(arr, Xx):
for i in range(len(arr)):

if arr[i] == x:
return 1i+1
return -1

Analysis and Design of Algorithms Dr Mohamed Loe

Time complexity

d Best Case Analysis: calculate lower bound on running time of an

algorithm.

def search(arr, Xx):
for i in range(len(arr)):

if arr[i] == x:
return 1i+1
return -1

Analysis and Design of Algorithms Dr Mohamed Loe

Time complexity

A The best case time complexity of linear search would be O(1).

def search(arr, Xx):
for i in range(len(arr)):
if arr[i] ==
return i+l
return -1

Analysis and Design of Algorithms Dr Mohamed Loe

Time complexity

d Best Case Analysis: the case that causes minimum number of

operations to be executed.

A For Linear Search, the best case occurs when x is present at the first

ocation. (example : search for number 2)

A So time complexity in the best case would be 0(1)

Analysis and Design of Algorithms Dr Mohamed Loe

Time complexity

3 Most of the times, we do worst case analysis to analyze algorithms.

d The average case analysis is not easy to do in most of the practical

cases and it is rarely done.

A The Best case analysis is bogus. Guaranteeing a lower bound on an

algorithm doesn’t provide any information.

Analysis and Design of Algorithms Dr Mohamed Loe

Asymptotic Notations

1) Big O Notation: is an Asymptotic Notation for the worst case.

2) Q Notation (omega notation): is an Asymptotic Notation for the

best case.

3) ® Notation (theta notation) : is an Asymptotic Notation for the

worst case and the best case.

Analysis and Design of Algorithms Dr Mohamed Loe

Big O Notation

Analysis and Design of Algorithms Dr Mohamed Loe

Big O Notation

1) O(1)

> Time complexity of a function (or set of statemen

O(1) it it doesn’t contain loop, recursion anc

s) is considered as

cal

constant time function. For example swap}

complexity.

def swap(sl, s2):
return s2, sl

to any other non-

unction has O(1) time

Analysis and Design of Algorithms

Dr Mohamed Loe

Big O Notation

> A loop or recursion that runs a constant number of times is also

considered as O(1). For example the following loop is O(1).

¢ 1s constant

c=4

for i in range(1l,c):
#some 0(1) expressions
#print(i)

Analysis and Design of Algorithms Dr Mohamed Loe

Big O Notation
2) Ofn}
> Time Complexity of a loop is considered as O(n) it the loop

variables is incremented / decremented by a constant amount. For

example the following loop statements have O(n) time complexity.

Analysis and Design of Algorithms Dr Mohamed Loe

Big O Notation

2) O(n)

n 1s variable

Cc 1s 1ncrement

for i in range(1l,n,c):
#some 0(1) expressions
print(i)

Analysis and Design of Algorithms Dr Mohamed Loe

Big O Notation

2) Ofn)
3 Another Example:

// Here c is a positive integer constant
for (int i =1; 1 <=n; 1 += c) {

// some O(1l) expressions

}

for (int i =n; 1 > 0; i -=c¢) {
// some O(1l) expressions

}

Analysis and Design of Algorithms Dr Mohamed Loe

Big O Notation

3) O(ne)

> Time complexity of nested loops is equal to the number of times the
innermost statement is executed. For example the following loop

statements have O(n?) time complexity

Analysis and Design of Algorithms Dr Mohamed Loe

Big O Notation

3) O(n?)

n 1s variable
Cc 1S 1ncrement
for i in range(l,n,c):
#some 0(1) expressions
for j in range(1l,n,c):
#some 0(1) expressions
print(i,J)

Analysis and Design of Algorithms Dr Mohamed Loe

Big O Notation

A Another Example

for (int i = 1; i <=n; 1 += c¢) {
for (int j = 1; j <=n; j += ¢) {
// some O(1l) expressions

for (int i =n; 1 > 0; i +=¢) {
for (int j = i41; j <=n; j += ¢) {
// some 0(1l) expressions

Analysis and Design of Algorithms Dr Mohamed Loe

Big O Notation

4) O(Logn)
> Time Complexity of a loop is considered as OllLogn) if the loop

variables is divided / multiplied by a constant amount.

n 1s variable

c 1S constant

i=2

while i<=n:
print(1i)
=HEEG

Analysis and Design of Algorithms Dr Mohamed Loe

Big O Notation

4) O(Logn)
> Another Example

for (int i = 1; i <=n; i *= c) {
// some O(1l) expressions

}

for (int i =n; 1 >0; 1 /=1c) {
// some 0(1l) expressions

Analysis and Design of Algorithms Dr Mohamed Loe

Big O Notation

5) OlLoglogn)
> Time Complexity of a loop is considered as O(Loglogn) if the loop

variables is reduced / increased exponentially by a constant.

n 1s variable

Cc 1S constant

i=2

while i<=n:
print(1i)
=11~

Analysis and Design of Algorithms Dr Mohamed Loe

Big O Notation

5) OlLoglogn)
> Another Example

// Here c 1s a constant greater than 1
for (int i = 2; i <=n; i = pow(i, c)) {
// some O(1l) expressions
}
//Here fun 1s sgrt or cuberoot or any other constant root
for (int 1 =n; 1 > 0; 1 = fun(i)) {

// some O(1l) expressions

Analysis and Design of Algorithms Dr Mohamed Loe

Big O Notation

3 How to combine time complexities of consecutive loops?

n,R 1s variable

for 1 in range(n):
print(i)

for j in range(m):
print(j)

d Time complexity of above code is O(n) + O(m) which is O(n+m)

Analysis and Design of Algorithms Dr Mohamed Loe

Growth Orders

n ot Olos) o) omog) o) o) ol
1 1 0 1 1 1 2 1

8 1 3 8 24 64 256 40xx103
30 1 5 30 150 900 10x10° 210x1032
500 1 9 500 4500 25x10* 3x1050 1x10134
1000 1 10 1000 10x10° 1x10° 1x10%°! 4x102567
16x103 1 14 16x103 224x103 256x106° - -
1x10° 1 17 1x10° 17x10° 10x10° - -

Analysis and Design of Algorithms Dr Mohamed Loe

Growth Orders

O(n") | on?)/ O(n)
O(vn)
: /
= O(log n)
/o
O(1)
/]

Data Input (Space)

Analysis and Design of Algorithms Dr Mohamed Loe

Growth Orders

Length of Input (N) Worst Accepted Algorithm

<10 O(N!),O(N°®)
<15 O(2N«N?2)

<20 O(2N«N)
<100 O(N4)

<400 O(N3)

<2K O(NZ?xlogN)
<10K O(N?)

<1M O(N=*logN)

<100M O(N),O(logN),O(1)

Analysis and Design of Algorithms Dr Mohamed Loe

A Find the complexity :IEunction(int n)
of the below if (n==1)
. return;
program: for (int i=1; i<=n; i++)
{
for (int j=1; j<=n; j++)
{
printf("*");
break;
}

Analysis and Design of Algorithms Dr Mohamed Loe

) , function(int n
3 Solution: Time ¢ ()

: if (n==1)
Complexity Ofn). return:
Even though the 'EOP (int i=1; i<=n; i++)
inner loop IS // Inner loop executes only one
// time due to break statement.
bounded by n, bUi' for (in't J=1J j<=n_; j++)
due to break {
printf("*");
statement It IS break;
. }
executing only once.)

Analysis and Design of Algorithms Dr Mohamed Loe

A Find the complexity of the below program:

void function(int n)
{
int count = 0;
for (int i=n/2; i<=n; 1i++)
for (int j=1; j+n/2<=n; j = j++)
for (int k=1; k<=n; k = k * 2)
count++;

Analysis and Design of Algorithms Dr Mohamed Loe

3 Solution: {
Time

O(n2logn)

void function(int n)

int count = 9;

// outer loop executes n/2 times
for (int i=n/2; i<=n; 1i++)

// middle loop executes n/2 times
for (int j=1; j+n/2<=n; j = Jj++)

// 1nner loop executes logh times
for (int k=1; k<=n; k = k * 2)
count++;

Analysis and Design of Algorithms Dr Mohamed Loe

A Find the complexity of the below program:

void function(int n)
i
int count = 0;
for (int i=n/2; i<=n; 1++)
for (int j=1; j<=n; j = 2 * j)
for (int k=1; k<=n; k = k * 2)
count++;

Analysis and Design of Algorithms Dr Mohamed Loe

3 Solution:
Time

O(n log?n)

void function(int n)

{
int count = 9;
for (int i=n/2; i<=n; i++)
// Executes O(Log n) times
for (int j=1; j<=n; j = 2 * j)
// Executes O(Log n) times
for (int k=1; k<=n; k = k * 2)
count++;
}

Analysis and Design of Algorithms Dr Mohamed Loe

OFind the void function(int n)
complexity int count = 0;
of the for (int 1=0; i<n; 1i++)
for (int j=1; j< i*i; j++)
if (%1 == 0)
program: {

below

for (int k=0; k<j; k++)
printf("*");

Analysis and Design of Algorithms Dr Mohamed Loe

void function(int n)

3 Solution: {
Time O(n?)

int count = ©;

// executes n times
for (int i=0; i<n; i++)

// executes O(n*n) times.
for (int j=i; j< i*i; j++)
if (j%i == 0)
{
// executes j times = O(n*n) times
for (int k=0; k<j; k++)
printf("*");

Analysis and Design of Algorithms Dr Mohamed Loe

Contact Me

facebook.com/mloey linkedin.com/in/mloey

mohamedloey@gmail.com

tWitte r.com / m I oey A \7/ .
mloey.github.io

Analysis and Desi orithms Dr Mohamed Loe

